MC-GAT: multi-layer collaborative generative adversarial transformer for cholangiocarcinoma classification from hyperspectral pathological images

Author:

Li Yuan,Shi Xu,Yang Liping,Pu Chunyu,Tan Qijuan1,Yang Zhengchun23,Huang HongORCID

Affiliation:

1. Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital

2. Chongqing Health Center for Women and Children

3. Women and Children’s Hospital of Chongqing Medical University

Abstract

Accurate histopathological analysis is the core step of early diagnosis of cholangiocarcinoma (CCA). Compared with color pathological images, hyperspectral pathological images have advantages for providing rich band information. Existing algorithms of HSI classification are dominated by convolutional neural network (CNN), which has the deficiency of distorting spectral sequence information of HSI data. Although vision transformer (ViT) alleviates this problem to a certain extent, the expressive power of transformer encoder will gradually decrease with increasing number of layers, which still degrades the classification performance. In addition, labeled HSI samples are limited in practical applications, which restricts the performance of methods. To address these issues, this paper proposed a multi-layer collaborative generative adversarial transformer termed MC-GAT for CCA classification from hyperspectral pathological images. MC-GAT consists of two pure transformer-based neural networks including a generator and a discriminator. The generator learns the implicit probability of real samples and transforms noise sequences into band sequences, which produces fake samples. These fake samples and corresponding real samples are mixed together as input to confuse the discriminator, which increases model generalization. In discriminator, a multi-layer collaborative transformer encoder is designed to integrate output features from different layers into collaborative features, which adaptively mines progressive relations from shallow to deep encoders and enhances the discriminating power of the discriminator. Experimental results on the Multidimensional Choledoch Datasets demonstrate that the proposed MC-GAT can achieve better classification results than many state-of-the-art methods. This confirms the potentiality of the proposed method in aiding pathologists in CCA histopathological analysis from hyperspectral imagery.

Funder

National Natural Science Foundation of China

Innovation Program for Chongqing Overseas Returnees

Graduate Research and Innovation Foundation of Chongqing

Higher Education and Research

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3