High-speed silicon-integrated photonic radio frequency switch based on optical switching

Author:

Yue Hengsong,Sun Haozhe,Chu TaoORCID

Abstract

Photonic radio frequency (RF) switches are promising to replace conventional electronic RF switches in modern RF communication systems owing to their high switching speed and immunity to electromagnetic interference. However, existing photonic RF switches are generally based on frequency or polarization filtering. Thus, they require more light sources and filters to increase the number of switching channels, consequently limiting scalability. We propose a silicon-integrated photonic RF switch based on optical switching. RF signals are first modulated into the optical domain and switched through phase control of the phase shifters in the optical switch. Switching is not related to the frequency or polarization of the optical carriers, thus reducing the number of light sources required. Experimental results demonstrate 10-GHz switching of two RF signals with frequencies of 20 GHz and 30 GHz. The proposed photonic RF switch can be further expanded to form a large switch matrix, possibly contributing to the development of large-scale RF communication systems.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3