Abstract
The photo-electron emission of a hydrogen atom irradiated by an ultraviolet laser pulse is investigated by numerically solving the time-dependent Schrödinger equation in momentum space. A subpeak structure with high intensity is observed in the photo-electron emission spectrum, and the peak of the enhanced structure shifts to a higher energy as the laser intensity increases. Through the strong-field approximation and the analysis of the population of the bound state , it is found that this subpeak structure is generated from the interference between the ionized electrons from the ground state and the ionized electrons from the 2p state after the resonant transition from the ground state to the 2p state. Analyzing the change rule of the photo-electron emission spectrum can further deepen the understanding of the energy change of the dressed bound state for an atom irradiated by an intense laser pulse.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献