Affiliation:
1. Southern University of Science and Technology
2. Shenzhen Bay Laboratory
Abstract
The blood-brain barrier (BBB) strictly regulates the substance exchange between the vascular network and the central nervous system, and plays a critical role in maintaining normal brain homeostasis. Impaired BBB is often accompanied with the emergence of cerebral diseases and probably further leads to severe neuroinflammation or even neurological degeneration. Hence, there is an urgent need to precisely monitor the impaired BBB to understand its pathogenesis and better guide the enactment of therapeutic strategies. However, there is a lack of high-resolution imaging techniques to visualize and evaluate the large-scale BBB disruption in pre-clinical and clinical aspects. In this study, we propose a dual-wavelength photoacoustic imaging (PAI) methodology that simultaneously reveals the abnormal microvasculature and impaired BBB within the cerebral cortex. In in vivo studies, BBB disruption in both mice and rats were induced by local hot-water stimulation and unilateral carotid arterial perfusion of hyperosmolar mannitol, respectively. Subsequently, the exogenous contrast agent (CA) was injected into the microcirculation via the tail vein, and photoacoustic (PA) images of the microvasculature and leaked CA within the cerebral cortex were obtained by dual-wavelength photoacoustic microscopy to evaluate the BBB disruption. Besides, analysis of distribution and concentration of leaked CA in lesion region was further conducted to quantitatively reveal the dynamic changes of BBB permeability. Furthermore, we exploited this approach to investigate the reversibility of BBB disruption within the two distinct models. Based on the experimental results, this new proposed approach presents excellent performance in visualizing microvasculature and leaked CA, and enabling it possesses great potential in evaluating the abnormal microvasculature and impaired BBB result from cerebrovascular diseases.
Funder
National Natural Science Foundation of China
Guangdong Science and Technology Department
Science and Technology Planning Project of Shenzhen Municipality
Startup grant from Southern University of Science and Technology
Guangdong Provincial Department of Education
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献