Non-imaging metasurface design for collimated beam shaping

Author:

Nielsen Kirstine E. S.ORCID,Carlsen Mads A.ORCID,Zambrana-Puyalto Xavier,Raza SørenORCID

Abstract

Non-imaging optical lenses can shape the light intensity from incoherent sources to a desired target intensity profile, which is important for applications in lighting, solar light concentration, and optical beam shaping. Their surface curvatures are designed to ensure optimal transfer of energy from the light source to the target. The performance of such lenses is directly linked to their asymmetric freeform surface curvature, which is challenging to manufacture. Metasurfaces can mimic any surface curvature without additional fabrication difficulty by imparting a spatially-dependent phase delay using optical antennas. As a result, metasurfaces are uniquely suited to realize non-imaging optics, but non-imaging design principles have not yet been established for metasurfaces. Here, we take an important step in connecting non-imaging optics and metasurface optics, by presenting a phase-design method for beam shaping based on the concept of optimal transport. We establish a theoretical framework that enables a collimated beam to be redistributed by a metasurface to a desired output intensity profile. The optimal transport formulation leads to metasurface phase profiles that transmit all energy from the incident beam to the output beam, resulting in an efficient beam shaping process. Through a variety of examples, we show that our approach accommodates a diverse range of different input and output intensity profiles. Last but not least, a full field simulation of a metasurface has been done to verify our phase-design framework.

Funder

Danmarks Frie Forskningsfond

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3