Affiliation:
1. University of Chinese Academy of Sciences
Abstract
We report on the development of all-fiber active photoacoustic spectroscopy, where active photoacoustic effect is generated by embedding a micro-nano fiber inside a fiber laser resonator to exploit the evanescent field of the high intracavity power. Acetylene detection at 1530.37 nm was selected for gas sensing demonstration. With a small diameter of 1.1 µm, the tapped fiber exploited ∼20% intracavity power for the evanescent-wave photoacoustic excitation, while only introduced a low intrinsic cavity loss of 0.08 dB. Our sensor achieved a minimum detection limit of 1 ppm at an integration time of 10 s, which can be improved to 73 ppb at 1000 s benefited from the high system stability. The sensing dynamic range was determined to be more than five orders. This spectroscopic technique combines fiber laser, photoacoustic spectroscopy, and fiber evanescent-wave absorption to achieve gas sensing with high flexibility, low optical noise, and easy optical alignment. Current limitations were discussed in detail to explore feasible ways to improve the performance in response time, dynamic range and sensitivity.
Funder
National Natural Science Foundation of China
Young Talent of Lifting Engineering for Science and Technology in Jilin
the Second Comprehensive Scientific Investigation of the Qinghai-Tibet Plateau
Subject
Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献