Detecting the transverse spin density of light via electromagnetically induced transparency

Author:

Liu Jinhong1,Wu Jinze23ORCID

Affiliation:

1. Taiyuan Institute of Technology

2. Taiyuan University of Science and Technology

3. Zhejiang University

Abstract

For light that is transversely confined, its field vector spins in a plane not orthogonal to the propagation direction, leading to the presence of transverse spin, which plays a fundamental role in the field of chiral quantum optics. Here, we theoretically propose a scheme to detect the transverse spin density (TSD) of light by utilizing a multilevel atomic medium. The scheme is based on the electromagnetically induced transparency effect, which enables the TSD-dependent modulation of the susceptibility of the atomic medium by using a coupling field whose TSD is to be detected. The modulated susceptibility results in a spin-dependent absorption for a probe beam passing through the atomic medium. We show that there exists a corresponding relationship between the TSD distribution of the coupling field and the polarization distribution of the transmitted probe beam through a theoretical study of two typical cases, in which the coupling field is provided by a tightly focused field and a two-beam interference field, respectively. Based on this relationship, the key features of the TSD of the coupling field, such as the spatial distribution, the symmetry property, and the spin-momentum locking, can be inferred from the transmitted probe beam. Benefiting from the fast response of the atomic medium to the variation of the coupling field, the present scheme is capable of detecting the TSD in real time, offering new possibilities for developing transverse-spin-based techniques.

Funder

National Natural Science Foundation of China

Taiyuan Institute of Technology Scientific Research Initial Funding

China Postdoctoral Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3