Ultra-low threshold deep ultraviolet generation in a hollow-core fiber

Author:

Sabbah MohammedORCID,Harrington Kerrianne1,Murphy Leah R.ORCID,Brahms ChristianORCID,Yerolatsitis Stephanos1ORCID,Stone James M.1,Birks Tim A.1,Travers John C.ORCID

Affiliation:

1. University of Bath

Abstract

Tunable ultrashort pulses in the ultraviolet spectral region are in great demand for a wide range of applications, including spectroscopy and pump–probe experiments. While laser sources capable of producing such pulses exist, they are typically very complex. Notably, resonant dispersive-wave (RDW) emission has emerged as a simple technique for generating such pulses. However, the required pulse energy used to drive the RDW emission, so far, is mostly at the microjoule level, requiring complicated and expensive pump sources. Here, we present our work on lowering the pump energy threshold for generating tuneable deep ultraviolet pulses to the level of tens of nanojoules. We fabricated a record small-core antiresonant fiber with a hollow-core diameter of just 6 μm. When filled with argon, the small mode area enables higher-order soliton propagation and deep ultraviolet (220 to 270 nm) RDW emission from 36 fs pump pulses at 515 nm with the lowest pump energy reported to date (tens of nanojoules). This approach will allow the use of low-cost and compact laser oscillators to drive nonlinear optics in gas-filled fibers for the first time to our knowledge.

Funder

Royal Academy of Engineering

Institution of Engineering and Technology

Engineering and Physical Sciences Research Council

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3