Super-Resolution-Chip: an in-vitro platform that enables super-resolution microscopy of co-cultures and 3D systems

Author:

Sade Ofir,Boneberg Ronja1,Weiss Yifat1,Beldjilali-Labro Megane1,Leichtmann-Bardoogo Yael1,Talpir Itay,Gottfried Irit,Ashery Uri1,Rauti Rossana2,Maoz Ben M.1ORCID

Affiliation:

1. Tel Aviv University

2. University of Urbino Carlo Bo

Abstract

The development of organs-on-a-chip platforms has revolutionized in-vitro cellular culture by allowing cells to be grown in an environment that better mimics human physiology. However, there is still a challenge in integrating those platforms with advanced imaging technology. This is extremely important when we want to study molecular changes and subcellular processes on the level of a single molecule using super-resolution microscopy (SRM), which has a resolution beyond the diffraction limit of light. Currently, existing platforms that include SRM have certain limitations, either as they only support 2D monocultures, without flow or as they demand a lot of production and handling. In this study, we developed a Super-Res-Chip platform, consisting of a 3D-printed chip and a porous membrane, that could be used to co-culture cells in close proximity either in 2D or in 3D while allowing SRM on both sides of the membrane. To demonstrate the functionality of the device, we co-cultured in endothelial and epithelial cells and used direct stochastic optical reconstruction microscopy (dSTORM) to investigate how glioblastoma cells affect the expression of the gap-junction protein Connexin43 in endothelial cells grown in 2D and in 3D. Cluster analysis of Connexin43 distribution revealed no difference in the number of clusters, their size, or radii, but did identify differences in their density. Furthermore, the spatial resolution was high also when the cells were imaged through the membrane (20-30 nm for x-y) and 10-20 nm when imaged directly both for 2D and 3D conditions. Overall, this chip allows to characterize of complex cellular processes on a molecular scale in an easy manner and improved the capacity for imaging in a single molecule resolution complex cellular organization.

Funder

Michael J. Fox Foundation for Parkinson's Research

National Institutes of Health

BrightFucos

The Zimmin Foundation

Förderkreis für Zusammenarbeit zwischen den Universitäten Konstanz und Tel Aviv

Teva Pharmaceutical Industries

The Aufzien Family Center for the Prevention and Treatment of Parkinson’s Disease at Tel Aviv University

BioChip

Ministry of Science, Technology and Space

European Research Council

Israel Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3