Affiliation:
1. Jilin University
2. Beijing Normal University
3. School of Physical Science and Information Technology of Liaocheng University
4. Brock University
Abstract
The stimulus-responsive smart switching of aggregation-induced emission (AIE) features has attracted considerable attention in 4D information encryption, optical sensors and biological imaging. Nevertheless, for some AIE-inactive triphenylamine (TPA) derivatives, activating the fluorescence channel of TPA remains a challenge based on their intrinsic molecular configuration. Here, we took a new design strategy for opening a new fluorescence channel and enhancing AIE efficiency for (E)-1-(((4-(diphenylamino)phenyl)imino)methyl)naphthalen-2-ol. The turn-on methodology employed is based on pressure induction. Combining ultrafast and Raman spectra with high-pressure in situ showed that activating the new fluorescence channel stemmed from restraining intramolecular twist rotation. Twisted intramolecular charge transfer (TICT) and intramolecular vibration were restricted, which induced an increase in AIE efficiency. This approach provides a new strategy for the development of stimulus-responsive smart-switch materials.
Funder
National Natural Science Foundation of China
Young and Middle-aged Scientific and Technological Innovation leaders and Team Projects in Jilin Province
National Key Research and Development Program of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献