Monitoring neonatal brain hemorrhage progression by photoacoustic tomography

Author:

Shan Tianqi1ORCID,Yang Hao2,Jiang Shixie2,Jiang Huabei2

Affiliation:

1. Chongqing Medical University

2. University of South Florida

Abstract

Neonatal brain hemorrhage (NBH) is the most common neurological disorder in neonates and its clinical interventions are very limited. Understanding the pathology of NBH by non-invasive in-vivo characterization of standardized animal models is essential for developing potential treatments. Currently, there is no suitable tool to provide non-invasive, non-ionizing dynamic imaging of neonatal mouse models with high resolution, high contrast, and deep imaging depth. In this study, we implemented a fast 3D photoacoustic tomography (PAT) system suitable for imaging neonatal mouse brains with good image quality and demonstrated its feasibility in non-invasive monitoring of the dynamic process of NBH in the whole neonatal mouse brain. The results present a high resolution and sensitivity for NBH detection. Both morphological and hemodynamic changes of the hematoma were accurately obtained. Our results demonstrated the potential of PAT as a powerful tool for the preclinical study of neonatal brain hemorrhage.

Funder

National Institutes of Health

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction to the Biophotonics Congress 2022 feature issue;Biomedical Optics Express;2022-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3