Affiliation:
1. University of Science and Technology of China
2. Quanzhou University of Information Engineering
Abstract
In this paper, the theoretical analysis of the passive mode-locked semiconductor ring lasers (PML-SRLs) is investigated based on a travelling wave model. It is found that both the optical confinement factor and the injection current make great contributions to the operation regime and the performance of PML-SRLs. All operation regimes of PML-SRLs are governed by the transient gain-loss balance. Such balance is closely associated with the relationship among the stimulated rate in the semiconductor optical amplifier (SOA), the carrier lifetime in the saturated absorber (SA), and the roundtrip time of the ring resonator. Furthermore, our investigation indicates that the mode-locked state of such PML-SRLs is independent of the passive waveguide, but the performance degrades with the increased waveguide loss or the shortened waveguide length, once the material bandwidth is wide enough. Another discovery is that it is possible to achieve the high energy pulse in the PML-SRL with shortening the passive length and narrowing the gain spectrum meanwhile. Overall, such investigations should benefit designing the required PML-SRLs and achieving the high performance.
Funder
The Key R&D Program of Jiangsu Province