Flexible and fast estimation method of far-field patterns for digital-coding metasurfaces

Author:

Mu Jing,Ma Qian,Cui Tie Jun

Abstract

We propose a flexible and fast estimation method to calculate the far-field patterns of digital-coding metasurfaces (DCMs) by performing chirp Z-transform (CZT), called the DCM-CZT method. Because of the expression form of convolution, CZT can be accelerated by fast Fourier transform. Compared with the traditional discrete Fourier transform (DFT) method, the DCM-CZT method can accurately estimate the far-field patterns with arbitrary element periods. More importantly, the DCM-CZT method can calculate partial far-field patterns for some specific orientations, instead of the global far-field patterns like DFT does. We show that the DCM-CZT method can efficiently improve the partial space-resolution to avoid the calculation error caused by the fence effect under acceptable computing time. We present six representative examples to demonstrate the capabilities of the proposed method. Results show that the far-field patterns calculated by the DCM-CZT method have good agreements with full-wave simulations and experimental measurements. However, the results of main-lobes calculated by the DFT method have obvious deviations when the element period is about 0.2 wavelengths. We believe that the DCM-CZT method has potential applications in wireless communications and radar detections.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Jiangsu Province

State Key Laboratory of Millimeter Waves

Fundamental Research Funds for the Central Universities

111 Project

China Postdoctoral Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3