Affiliation:
1. University of Rochester
Abstract
Laws of reflection and refraction between homogeneous media and gradient index (GRIN) ray behavior are both derived from Fermat’s principle. Design methods for GRIN can be difficult to analytically develop. This Letter proposes a foundation for complete replacement of refracting and total internally reflecting optical interfaces in existing designs with GRIN distribution. The proposed method can aid in incorporating GRIN into existing optical designs. Refraction in GRIN is specified to match the ray striking and leaving the optical interface in both position and angle. This result is shown for a collection of similar GRIN functions. One GRIN function is analyzed over a full space of attainable ray bend angles. A local arbitrarily oriented planar interface is replaced with GRIN distribution, and ray behavior is maintained.
Subject
Atomic and Molecular Physics, and Optics