Optical fiber optofluidic laser based on surfactant solubilization of rhodamine B gain in an aqueous solution

Author:

Li Dongyang1ORCID,Zhou Li2,Yu Qiuhan1,Pu Xiaoyun1,Sun Yuze3ORCID,Zhou Qing1,Zhang Yuanxian1ORCID

Affiliation:

1. Yunnan University

2. ZhaoTong University

3. University of Texas at Arlington

Abstract

We report a whispering gallery mode (WGM)-based fiber optofluidic laser (FOFL), in which rhodamine B (RhB) in an aqueous surfactant solution of sodium dodecylbenzene sulfonate (SDBS) is used as the laser gain medium. Here, the role of SDBS is to scatter the RhB dye molecules to effectively prevent its self-association in the aqueous solution. Therefore, the fluorescence quantum yield of the used RhB dye is improved due to the enhanced solubilization, which results in a low lasing threshold of ∼2.2 µJ/mm2 when the concentration of SDBS aqueous solution reaches up to 20 mM, on par with or even better than most of the optofluidic dye lasers using RhB as the gain medium in an organic solution. We then establish a model of solubilization capacity of SDBS micelles, which successfully addresses the mechanisms of dye-surfactant interactions in the proposed FOFL system. We further apply this FOFL platform to the case of concentration sensing of the used SDBS, which exhibits a 2-order-of-magnitude improvement in sensitivity compared to the fluorescence measurement due to the signal amplification inherent to the lasing process. The proposed FOFL platform in combination with surfactant solubilization gain medium in an aqueous solution promises to enable chip-scale coherent light sources for various environmental and bio-chemical sensing applications.

Funder

Joint Key Project of Yunnan Province of China

Young and Middle-aged Academic Leaders in Yunnan Province (Reserve Talents), China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3