From Bloch surface waves to cavity-mode resonances reaching an ultrahigh sensitivity and a figure of merit

Author:

Gryga Michal,Ciprian DaliborORCID,Hlubina PetrORCID

Abstract

We report on a new sensing concept based on resonances supported by a one-dimensional photonic crystal (1DPhC) microcavity resonator in the Kretschmann configuration. For a 1DPhC comprising six bilayers of TiO2/SiO2 with a termination layer of TiO2 employed to form a microcavity, we show that when the angle of incidence is changed, the Bloch surface waves (BSWs) can be transformed into cavity-mode resonances exhibiting an ultrahigh sensitivity and a figure of merit. Using wavelength interrogation, we demonstrate that Bloch surface TE wave excitation shows up as a sharp dip in the reflectance spectrum with a sensitivity and a figure of merit (FOM) of 70 nm per refractive index unit (RIU) and 19.5 RIU−1, respectively. When the angle of incidence decreases, cavity-mode resonances for both TE and TM waves are resolved for RI in a range of 1.0001–1.0005. The sensitivity and FOM can reach 52,300 nm/RIU and 402,300 RIU−1 for the TE wave, and 14,000 nm/RIU and 2154 RIU−1 for the TM wave, respectively. In addition, resonances are confirmed experimentally for a humid air with a sensitivity of 0.073 nm per percent of the relative humidity (%RH) for BSW resonance and is enhanced to 1.367 nm/%RH for the TM cavity-mode resonance. This research, to the best of the authors’ knowledge, is the first demonstration of a new BSW-like response that can be utilized in a simple sensing of a wide range of gaseous analytes.

Funder

The European Union Just Transition Fund

the REFRESH-Research Excellence for REgion Sustainability and High-Tech Industries

Student Grant System

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3