Affiliation:
1. Beijing National Research Centre for Information Science and Technology (BNRist)
2. Beijing University of Post and Telecommunications
Abstract
In this paper, we put forward a data-driven fiber model based on the deep neural network with multi-head attention mechanism. This model, which predicts signal evolution through fiber transmission in optical fiber telecommunications, can have advantages in computation time without losing much accuracy compared with conventional split-step fourier method (SSFM). In contrast with other neural network based models, this model obtains a relatively good balance between prediction accuracy and distance generalization especially in cases where higher bit rate and more complicated modulation formats are adopted. By numerically demonstration, this model can have ability of predicting up to 16-QAM 160Gbps signals with any transmission distances ranging from 0 to 100 km under both circumstances of the signals without or with the noise.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献