Fast and high-resolution spectroscopy based on asynchronous optical sampling

Author:

Yang Ningning1,Wang Danlu1,Hu Hao1,Li Yaoshuai1,Li Lun1,Chen Liao1,Zhang Chi1ORCID,Zhang Xinliang1

Affiliation:

1. Huazhong University of Science and Technology

Abstract

Dispersive time stretch has made many ultrafast applications possible owing to its high frame rate, as compared to conventional spectroscopies. By further introducing a converging time lens, this spectroscopy can resolve arbitrary emission spectra within the aperture. However, a spectral resolution of tens of picometers hinders its high-precision application. There are two limitations: the temporal aperture of the acquired signal and the actual acquisition bandwidth. To overcome these restrictions, two approaches were developed. First, a large-aperture time lens, with higher-order dispersion compensation, is used to overcome the fundamental limit of the time–bandwidth product. Second, asynchronous optical sampling, based on two frequency combs, overcomes the technical limit of the acquisition bandwidth. As a result, in this study, time-stretch spectroscopy achieved a 1-pm spectral resolution, 24-nm observation bandwidth, and 1-kHz frame rate. Moreover, it was used to observe some spectral dynamics of the random lasing process and devices with narrow spectral widths. This scheme provides essential improvement for time-stretch spectroscopy to achieve high precision.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3