Abstract
A bandwidth-enhanced linear frequency-modulated (LFM) waveform generation scheme is proposed and demonstrated based on dynamic control of an optically injected semiconductor laser (OISL). The OISL operates at the period-one (P1) oscillation state under proper injection conditions. After photodetection, a tunable microwave signal is obtained with its frequency determined by the optical injection strength and the detuning frequency between the master and slave lasers. For a fixed detuning frequency, an LFM waveform can be generated by introducing an electrical control signal S(t) with a quasi-sawtooth profile to dynamically manipulate the injection strength of the OISL. Then, to overcome the bandwidth limitation by the achievable P1 frequency range under a given detuning frequency, both the injection strength and the detuning frequency are dynamically controlled to achieve a synthesized P1 frequency range, thus generating LFM waveforms with enhanced bandwidths. In our demonstration, LFM waveforms with a synthesized bandwidth of 8 GHz (12–20 GHz) and 24.8 GHz (12.6–37.4 GHz) are generated in the experiment and simulation, respectively.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献