Compression OCT-elastography combined with speckle-contrast analysis as an approach to the morphological assessment of breast cancer tissue

Author:

Plekhanov Anton A.ORCID,Gubarkova Ekaterina V.,Sirotkina Marina A.,Sovetsky Alexander A.1,Vorontsov Dmitry A.2,Matveev Lev A.1,Kuznetsov Sergey S.2,Bogomolova Alexandra Y.3,Vorontsov Alexey Y.2,Matveyev Alexander L.1,Gamayunov Sergey V.2,Zagaynova Elena V.3,Zaitsev Vladimir Y.1ORCID,Gladkova Natalia D.

Affiliation:

1. Russian Academy of Sciences

2. Nizhny Novgorod Regional Oncologic Hospital

3. Lobachevsky State University

Abstract

Currently, optical biopsy technologies are being developed for rapid and label-free visualization of biological tissue with micrometer-level resolution. They can play an important role in breast-conserving surgery guidance, detection of residual cancer cells, and targeted histological analysis. For solving these problems, compression optical coherence elastography (C-OCE) demonstrated impressive results based on differences in the elasticity of different tissue constituents. However, sometimes straightforward C-OCE-based differentiation is insufficient because of the similar stiffness of certain tissue components. We present a new automated approach to the rapid morphological assessment of human breast cancer based on the combined usage of C-OCE and speckle-contrast (SC) analysis. Using the SC analysis of structural OCT images, the threshold value of the SC coefficient was established to enable the separation of areas of adipose cells from necrotic cancer cells, even if they are highly similar in elastic properties. Consequently, the boundaries of the tumor bed can be reliably identified. The joint analysis of structural and elastographic images enables automated morphological segmentation based on the characteristic ranges of stiffness (Young's modulus) and SC coefficient established for four morphological structures of breast-cancer samples from patients post neoadjuvant chemotherapy (residual cancer cells, cancer stroma, necrotic cancer cells, and mammary adipose cells). This enabled precise automated detection of residual cancer-cell zones within the tumor bed for grading cancer response to chemotherapy. The results of C-OCE/SC morphometry highly correlated with the histology-based results (r =0.96-0.98). The combined C-OCE/SC approach has the potential to be used intraoperatively for achieving clean resection margins in breast cancer surgery and for performing targeted histological analysis of samples, including the evaluation of the efficacy of cancer chemotherapy.

Funder

Russian Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3