Affiliation:
1. Complesso Universitario di Monte Sant’Angelo
2. University of Naples “Federico II”
3. CNST@POLIMI—Fondazione Istituto Italiano di Tecnologia
Abstract
Flat optical elements enable the realization of ultra-thin devices able to either reproduce or overcome the functionalities of standard bulky components. The fabrication of these elements involves the structuration of material surfaces on the light wavelength scale, whose geometry has to be carefully designed to achieve the desired optical functionality. In addition to the limits imposed by lithographic design-performance compromises, their optical behavior cannot be accurately tuned afterward, making them difficult to integrate in dynamic optical systems. Here we show the realization of fully reconfigurable flat varifocal diffractive lens, which can be in-place realized, erased and reshaped directly on the surface of an azopolymer film by an all-optical holographic process. Integrating the lens in the same optical system used as standard refractive microscope, results in a hybrid microscope capable of multi-depth object imaging. Our approach demonstrates that reshapable flat optics can be a valid choice to integrate, or even substitute, modern optical systems for advanced functionalities.
Funder
H2020 European Research Council
Ministero dell’Istruzione, dell’Università e della Ricerca
Fondazione Cariplo
Subject
Atomic and Molecular Physics, and Optics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献