Unmanned-aerial-vehicle based optical camera communication system using light-diffusing fiber and rolling-shutter image-sensor

Author:

Chang Yun-Han1ORCID,Tsai Shang-Yen1,Chow Chi-Wai1ORCID,Wang Chih-Chun1,Tsai Deng-Cheng1,Liu Yang2,Yeh Chien-Hung3ORCID

Affiliation:

1. National Chiao Tung University

2. Philips Electronics Ltd.

3. Feng Chia University

Abstract

We put forward and demonstrate a light-diffusing fiber equipped unmanned-aerial-vehicle (UAV) to provide a large field-of-view (FOV) optical camera communication (OCC) system. The light-diffusing fiber can act as a bendable, lightweight, extended and large FOV light source for the UAV-assisted optical wireless communication (OWC). During UAV flying, the light-diffusing fiber light source could be tilted or bended; hence, offering large FOV as well as supporting large receiver (Rx) tilting angle are particularly important for the UAV-assisted OWC systems. To improve the transmission capacity of the OCC system, one method based on the camera shutter mechanism, which is known as rolling-shuttering is utilized. The rolling-shuttering method makes use of the feature of complementary-metal-oxide-semiconductor (CMOS) image sensor to extract signal pixel-row by pixel-row. The data rate can be significantly increased since the capture start time for each pixel-row is different. As the light-diffusing fiber is thin and occupies only a few pixels in the CMOS image frame, Long-short-term-memory neural-network (LSTM-NN) is used to enhance the rolling-shutter decoding. Experimental results show that the light-diffusing fiber can satisfactorily act as an “omnidirectional optical antenna” providing wide FOVs and 3.6 kbit/s can be achieved, accomplishing the pre-forward error correction bit-error-rate (pre-FEC BER = 3.8 × 10−3).

Funder

National Science and Technology Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3