Reconfigurable intelligent surface-assisted free-space optical communication system under the influence of signal blockage for smart-city applications

Author:

Naik Ramavath Prasad1ORCID,Krishnan Prabu1,Simha G. D. Goutham2ORCID

Affiliation:

1. National Institute of Technology

2. Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE)

Abstract

Atmospheric turbulence and pointing errors represent substantial hurdles to free-space optical communications (FSOs), impeding their practical design. The reconfigurable intelligent surface (RIS) is an emerging technology that enables reflective radio transmission conditions for next-generation 5G/6G wireless frameworks by intelligently adjusting the beam in the desired direction using low-cost inactive reflecting elements. In this paper, we proposed an RIS-assisted FSO system for mitigating the effects of atmospheric turbulence, pointing errors, and communication system signal blockage. The probability density function and cumulative distribution functions of an FSO system composed of N -RIS elements are evaluated in a free-space environment that contains obstructions. We derived closed-form expressions for the proposed system’s bit error rate (BER), outage probability, and channel capacity. The proposed system’s performance is analyzed in terms of BER, outage probability, and channel capacity under various weather conditions, pointing errors, and signal blockage. The results are plotted as a function of number of RIS elements and average signal-to-noise ratio. The proposed system will be beneficial in smart-city applications since it will provide reliable connectivity in urban environments with a high population density and high-rise buildings.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3