Integral imaging three-dimensional display system with anisotropic backlight for the elimination of voxel aliasing and separation

Author:

Zhao Chong-Ji1,Guo Zhao-Da1,Deng Huan1,Yang Cui-Ni1,Bai Yu-Cheng1

Affiliation:

1. Sichuan University

Abstract

Compared with conventional scattered backlight systems, integral imaging (InIm) display system with collimated backlight can reduce the voxel size, but apparent voxel separation and severe graininess still exist in reconstructed 3D images. In this paper, an InIm 3D display system with anisotropic backlight control of sub-pixels was proposed to resolve both voxel aliasing and voxel separation simultaneously. It consists of an anisotropic backlight unit (ABU), a transmissive liquid crystal panel (LCP), and a lens array. The ABU with specific horizontal and vertical divergence angles was proposed and designed. Within the depth of field, the light rays emitted from sub-pixels are controlled precisely by the ABU to minimize the voxel size as well as stitch adjacent voxels seamlessly, thus improving the 3D image quality effectively. In the experiment, the prototype of our proposed ABU-type InIm system was developed, and the spatial frequency was nearly two times of conventional scattered backlight InIm system. Additionally, the proposed system eliminated the voxel separation which usually occurs in collimated backlight InIm system. As a result, voxels reconstructed by our proposed system were stitched in space without aliasing and separation, thereby greatly enhancing the 3D resolution and image quality.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Sichuan Province Science and Technology Support Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3