Spatio-temporal joint oversampling-downsampling technique for ultra-high resolution fiber optic distributed acoustic sensing

Author:

Li Hao1,Fan Cunzheng1,Shi Zhengxuan1,Yan Baoqiang1,Chen Junfeng1,Yan Zhijun12,Liu Deming1,Shum Perry3,Sun Qizhen12

Affiliation:

1. Huazhong University of Science and Technology

2. HUST-Wuxi Research Institute

3. Southern University of Science and Technology

Abstract

In order to suppress the noise of the coherent fiber distributed acoustic sensing (DAS) system, the spatio-temporal joint oversampling-downsampling technique is proposed. The spatial oversampling is used for artificially dense sampling, whose spacing is far less than the target spatial resolution. Then the spatial downsampling performed by the average of multiple differential sub-vectors is utilized to reduce the influence of noise vectors, which could completely eliminate the interfere fading without increasing any system complexity and introducing any crosstalk. Meanwhile, the temporal oversampling-downsampling is analyzed from the perspective of theory and simulation, demonstrating that the noise floor will decrease with the increase of downsampling coefficient. The temporal oversampling is carried out to expand the noise distribution bandwidth and ensure the correct quantization of the noise frequency. Then the temporal downsampling of differential phase reconstruction is utilized to recover the target bandwidth and reduce the out-of-band noise. The experimental results prove that the noise floor is inversely correlated with the spatiotemporal downsampling factors. The strain resolution of the DAS system with the proposed scheme can reach 2.58pε/√Hz@100Hz-500Hz and 9.47pε/√Hz@10Hz under the condition of DC-500Hz target bandwidth, as well as the probability of the large-noise sensing channels is greatly reduced from 44.32% to 0%. Moreover, the demodulated SNR of dynamic signal is improved by 20.8dB compared with the traditional method. Without any crosstalk, the noise floor is optimized 8dB lower than the averaging technique. Based on the proposed method, the high-performance DAS system has significant competitiveness in the applications with the demand of high-precision and high-sensitivity, such as passive-source seismic imaging and VSP exploration.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Innovation Fund of WNLO

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3