Four-wavelength quadrature phase demodulation technique for extrinsic Fabry–Perot interferometric sensors

Author:

Zhang Wanjin12ORCID,Lu Ping12,Qu Zhiyuan1,Zhang Jiangshan1,Liu Deming1

Affiliation:

1. Huazhong University of Science and Technology

2. Shenzhen Huazhong University of Science and Technology Research Institute

Abstract

In this Letter, we report a four-wavelength quadrature phase demodulation technique for extrinsic Fabry–Perot interferometric (EFPI) sensors and dynamic signals. Four interferometric signals are obtained from four different laser wavelengths. A wavelength interval of four wavelengths is chosen according to the free spectrum range (FSR) of EFPI sensors to generate two groups of anti-phase signals and two groups of orthogonal signals. The linear fitting (LF) method is applied to two groups of anti-phase signals to eliminate the dc component and ac amplitude to obtain two normalized orthogonal signals. The differential cross multiplication (DCM) method is then used to demodulate the phase signal from these two normalized orthogonal signals. The proposed LF and DCM (LF-DCM) based four-wavelength quadrature phase demodulation overcomes the drawback of the traditional ellipse fitting (EF) and DCM (EF-DCM) based dual-wavelength demodulation method that it is not suitable for weak signal demodulation since the ellipse degenerates into a straight line, which makes the EF algorithm invalid. Moreover, it also avoids the assumption that the dc component and ac amplitude of interferometric signals are identical, which is widely used in three-wavelength demodulation. An EFPI acoustic sensor is tested to prove the four-wavelength quadrature phase demodulation and experimental results show that the proposed phase demodulation method shows advantages of large dynamic range and wide frequency band. Linearity is as high as 0.9999 and a high signal-to-noise ratio (SNR) is observed from 1 Hz to 100 kHz.

Funder

National Natural Science Foundation of China

NSFC-RS Exchange Programme

The Royal Society International Exchanges 2020 Cost Share (NSFC) of UK

Science, Technology and Innovation Commission of Shenzhen Municipality

Science Fund for Creative Research Groups of the Nature Science Foundation of Hubei

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3