Low-temperature NIR-VUV optical constants of (001) LaAlO3 crystal

Author:

Nepomniashchaia Natalia12ORCID,Vetokhina Volha1,Chvostova Dagmar1,Bryknar Zdenek2,Dejneka Alexandr1,Tyunina Marina13

Affiliation:

1. Institute of Physics of the Czech Academy of Sciences

2. Czech Technical University in Prague

3. University of Oulu

Abstract

The optical constants and dielectric function of (001) LaAlO3 crystal were investigated at low temperatures down to 10 K in the NIR-VUV spectral range (photon energies 0.8-8.8 eV). Reflection variable angle spectroscopic ellipsometry and transmission spectroscopy were applied. Interband transitions were examined using the Tauc plots and the critical-point analysis. At room temperature, the indirect bandgap of 5.6 ± 0.01 eV and the lowest-energy direct transition at 7.2 ± 0.03 eV were detected. On cooling to 10 K, a blueshift of ∼0.2 eV and ∼0.1 eV was observed for the indirect and direct transitions, respectively. In the transparency spectral range, the index of refraction was found to be nearly temperature-independent and vary with photon energy from 2.0 (1 eV) to 2.5 (5.5 eV). It was suggested that the excellent thermal stability of the index of refraction may be related to the revealed thermally stable interband transitions. The results are of importance for modeling and design of modern optical devices.

Funder

European Structural and Investment Funds and the Ministry of Education, Youth and Sports of the Czech Republic through Programme "Research, Development and Education"

The Grant Agency of the Czech Technical University in Prague

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3