Affiliation:
1. Shanghai University
2. University of Warwick
3. Xinjiang Normal University
Abstract
An over 75 nm broadband spectrum with a gain per unit length of >2 dB/cm was obtained from a homemade Yb: YAG crystal-derived silica fiber (YCDSF) with Yb-doping concertation of 6.57 wt.%. Using a 13-cm-long YCDSF, a low-noise wavelength-tunable single-frequency fiber laser has been constructed, enabling a single longitudinal mode oscillation from 1009 to 1070 nm. In particular, in the 1023-1056 nm waveband, the laser operating at any wavelength exhibited a maximum output power over 37 mW with power fluctuations below 0.38%, a slope efficiency >8%, and an optical signal-to-noise ratio higher than 60 dB. A linewidth of less than 2.8 kHz was also observed at the maximum pump powers, and relative intensity noise was as low as -155 dB/Hz at frequencies above 1.0 MHz. These results indicate that the YCDSFs with broadband high-gain characteristics are promising for wavelength-tunable fiber lasers in applications such as optical coherence tomography, precision metrology, nonlinear frequency conversion, and so on.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
111 Project
Shanghai Professional Technical Public Service Platform of Advanced Optical Waveguide Intelligent Manufacturing and Testing
Subject
Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献