Non-generic bound states in the continuum in waveguides with lateral leakage channels

Author:

Zhang Nan1ORCID,Lu Ya Yan1ORCID

Affiliation:

1. City University of Hong Kong

Abstract

For optical waveguides with a layered background which itself is a slab waveguide, a guided mode is a bound state in the continuum (BIC), if it coexists with slab modes propagating outwards in the lateral direction; i.e., there are lateral leakage channels. It is known that generic BICs in optical waveguides with lateral leakage channels are robust in the sense that they still exist if the waveguide is perturbed arbitrarily. However, the theory is not applicable to non-generic BICs which can be defined precisely. Near a BIC, the waveguide supports resonant and leaky modes with a complex frequency and a complex propagation constant, respectively. In this paper, we develop a perturbation theory to show that the resonant and leaky modes near a non-generic BIC have an ultra-high Q factor and ultra-low leakage loss, respectively. Recently, many authors studied merging-BICs in periodic structures through tuning structural parameters. It has been shown that resonant modes near a merging-BIC have an ultra-high Q factor. However, the existing studies on merging-BICs are concerned with specific examples and specific parameters. Moreover, we analyze an arbitrary structural perturbation given by δF(r) to waveguides supporting a non-generic BIC, where F(r) is the perturbation profile and δ is the amplitude, and show that the perturbed waveguide has two BICs for δ > 0 (or δ < 0) and no BIC for δ < 0 (or δ > 0). This implies that a non-generic BIC can be regarded as a merging-BIC (for almost any perturbation profile F) when δ is considered as a parameter. Our study indicates that non-generic BICs have interesting special properties that are useful in applications.

Funder

Research Grants Council of Hong Kong

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3