Mixture fraction measurement in turbulent non-premixed MILD jet flame using Rayleigh scattering

Author:

Sahoo Abinash1ORCID,Ramachandran Aravind2,Narayanaswamy Venkateswaran1,Lyons Kevin M.1

Affiliation:

1. North Carolina State University

2. Graz University of Technology

Abstract

Turbulent combustion of jet flames in a hot diluted coflow of combustion products is conducive to the transition from conventional flamelet combustion to a regime of moderate or intense low oxygen dilution (MILD) combustion, which is commonly characterized by a very low emission and noise. MILD combustion is also characterized by distributed combustion where the net heat release is positive across the entire combustion domain. The turbulence/chemistry interactions in this regime that determine the flame structure, local temperature, and species distribution critically depend on the mixture fraction and scalar dissipation fields. However, there are no experimental tools to measure the mixture fraction field in a distributed (MILD) combustion regime. The present work offsets this limitation by demonstrating a Rayleigh scattering-based approach to measure mixture fraction in a turbulent ethylene MILD combustion zone. 1D counterflow flame simulations enabled mapping the locally calibrated Rayleigh scattering fields to mixture fractions in the fuel-rich regions. This approach also shows very low sensitivity to the local temperature and composition. Overall, the results provide compelling evidence that the distributed heat release does not significantly impact the turbulent processes of the flow-field for the conditions examined. The measurement uncertainty from this approach and its extension to more complex fuels are also discussed. The present technique is limited to mildly turbulent, fully MILD/distributed flame with representative scalar dissipation rates.

Funder

Army Research Office

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3