Ge-polymer bridge waveguide for mode-locked laser pulse generation

Author:

Liu Jinyuan,Ding Zhenming,Zhang ZiyangORCID

Abstract

A Ge-polymer hybrid waveguide is sandwiched between an indium phosphide (InP) reflective gain chip and a fiber Bragg grating (FBG) to construct a laser system. The hybrid waveguide serves as a bridge between the gain chip and the fiber with tailored mode-field matching at both facets. The 50-nm amorphous Ge (α-Ge) layer shows a nonlinear absorption effect at 1550 nm. The hybrid waveguide is further verified by a femtosecond laser transmission experiment to show the pulse width compression effect. Such waveguide is then integrated inside the laser cavity as a passive saturable absorber to modulate the longitudinal modes for a pulsed output. This polymer-bridged mode-locked laser adopts an InP gain chip for compact assembly and also a FBG with a flexible length to adjust the pulse repetition rate. The mode-locked laser output around the designed 50 MHz repetition rate is demonstrated. The pulse width is measured as 147 ps, and the signal-to-noise ratio is larger than 50 dB. This work introduces a “ternary” mode-locked laser system, taking advantage of discrete photonic components bridged by a polymer-based waveguide. It also proves the feasibility of applying α-Ge films as practical and low-cost saturable absorbers in photonic devices.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3