Affiliation:
1. Chongqing University of Posts and Telecommunications
Abstract
This paper proposes StarLight, a low-power consumption and high inference throughput photonic artificial neural network (ANN) accelerator featuring the photonic ‘in-memory’ computing and hybrid mode-wavelength division multiplexing (MDM-WDM) technologies. Specifically, StarLight uses nanophotonic non-volatile memory and passive microring resonators (MRs) to form a photonic dot-produce engine, achieving optical ‘in-memory’ multiplication operation with near-zero power consumption during the inference phase. Furthermore, we design an on-chip wavelength and mode hybrid multiplexing module and scheme to increase the computational parallelism. As a proof of concept, a 4×4×4 optical computing unit featuring 4-wavelength and 4-mode is simulated with 10 Gbps, 15 Gbps and 20 Gbps data rates. We also implemented a simulation on the Iris dataset classification and achieved an inference accuracy of 96%, which is entirely consistent with the classification accuracy on a 64-bit computer. Therefore, StarLight holds promise for realizing low energy consumption hardware accelerators to address the incoming challenges of data-intensive artificial intelligence (AI) applications.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Chongqing Postdoctoral Science Foundation
Chongqing Top-notch Youth Talent Support Project
Natural Science Foundation of Chongqing
Chongqing Municipal Education Commission
Subject
Atomic and Molecular Physics, and Optics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献