Simplifying asynchronous optical sampling: an experimental approach toward industrial integration exploiting lock-in acquisition

Author:

Peli Simone1,Tognazzi Andrea2ORCID,Franceschini Paolo23ORCID,Gandolfi Marco23ORCID,Giannetti Claudio24ORCID,Ferrini Gabriele4ORCID,Banfi Francesco5ORCID

Affiliation:

1. Castellini Officine Meccaniche

2. Istituto Nazionale di Ottica - Consiglio Nazionale delle Ricerche (INO-CNR)

3. Università degli Studi di Brescia

4. Università Cattolica del Sacro Cuore

5. CNRS, Université Claude Bernard Lyon1, Institut Lumière Matière

Abstract

Time-resolved optical spectroscopies are emerging as a go-to technique for non-destructive testing of nanomaterials. Inspecting the thermal and mechanical properties of a mesoscale device requires achieving delay times beyond the ns timescale in a nanoscopy setup, potentially in a vibration polluted environment. These requirements constitute a major challenge for traditional pump-probe techniques based on moving mechanical delay lines and lock-in detection. Asynchronous optical sampling (ASOPS) and electronically controlled optical sampling (ECOPS), avoiding any moving mechanical parts, are good alternatives. However, their detection scheme is based on fast-balanced photodiodes, which, as a technology, are not as widespread, not as developed, and lack the performance of lock-in based detection. In this study, we introduce what we believe is a novel approach that integrates ASOPS/ECOPS and lock-in detection methodologies, eliminating the necessity for a reference signal and streamlining the optical configuration. By leveraging the strengths of each technique, our approach enhances simplicity and efficiency. The scheme is first validated against standard approaches in the frame of a beam-depletion measurement in a sum frequency experiment. It is then tested in a paradigmatic case study to inspect the mechanics of a single gold nanodisk, with dimensions in the 100 nm range, nanopatterned on a sapphire substrate. These results widen the range of applicability of time-resolved optical techniques as a nano-metrology tool to industrial settings.

Funder

European Commission

Ministero dell’Istruzione, dell’Università e della Ricerca

Università Cattolica del Sacro Cuore

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3