Origin of the frequency-sensitive super-collimation phenomenon from the geometry of band dispersion surface for two-dimensional photonic crystals

Author:

Zhang Meng1ORCID,Huang JunMing1,Jiang XunYa1

Affiliation:

1. Fudan University

Abstract

Frequency-sensitive super-collimation (FSSC) is a novel dispersion phenomenon of photonic crystals (PhCs) that can realize the beam collimating propagation with very high frequency sensitivity. In order to deeply investigate the origin and the stability of FSSC phenomenon in a wide parameter space, we study the geometry of dispersion surface in detail. Four features for the special geometry of dispersion surface with FSSC are found for rectangular PhCs. The special geometry supports the stability of FSSC in a wide range of parameter space. Two-parameter modulation (TPM) method, in which the aspect ratio β and the dielectric constant of rods ɛ r of rectangular lattice are chosen as the key parameters, is used to analyze the geometry of dispersion surface from the frequency changes at the high-symmetry points. Step by step, the origin of such geometry is revealed and the evolving process can be explained by the field distribution changes of Bloch modes at the high-symmetry points. Furthermore, we show that the geometry not only can be used to explain the origin and the stability of FSSC, but also can help us to find other FSSC phenomenons. Theoretically, we believe the geometry of dispersion surface and the TPM can be widely used on the studies of complex dispersion properties of PhCs. The FSSCs found in this work with higher sensitivity or higher stability can help us to design new on-chip PhC devices.

Funder

National High-tech Research and Development Program

National Key Basic Research Program For Youth

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3