Potential of edge machine learning for instrumentation

Author:

Therrien Audrey C.ORCID,Gouin-Ferland Berthié,Rahimifar Mohammad Mehdi

Abstract

New developments in radiation and photonic detectors improve resolution, sensitivity, size, and rate, all of which contribute to a gigantic increase in the data production rate. Moving data analysis and compression adjacent or even embedded within the detector hardware will reduce the data volumes generated, thereby reducing material cost, power, and data management requirements. Several solutions are already being developed both on the hardware and on the software side to facilitate the use of machine learning as a real-time data analysis solution.

Funder

Canada Research Chairs

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient compression at the edge for real-time data acquisition in a billion-pixel X-ray camera;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-01

2. Exploring machine learning to hardware implementations for large data rate x-ray instrumentation;Machine Learning: Science and Technology;2023-11-24

3. A Versatile Edge Machine Learning Test Bench for High Bandwidth Instrumentation;2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors (NSS MIC RTSD);2023-11-04

4. Building Real Time Edge Machine Learning Systems for High Data Rate Acquisition;2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors (NSS MIC RTSD);2023-11-04

5. Label-free timing analysis of SiPM-based modularized detectors with physics-constrained deep learning;Machine Learning: Science and Technology;2023-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3