Unidirectional amplification in optomechanical system coupling with a structured bath

Author:

Peng Rui1,Zhang Wen-Zhao2,Chao Shilei1,Zhao Chengsong1,Yang Zhen1,Yang Junya1,Zhou Ling1

Affiliation:

1. Dalian University of Technology

2. Ningbo University

Abstract

Nonreciprocity plays an indispensable role in quantum information transmission. We theoretically study the unidirectional amplification in the non-Markovian regime, in which a nanosphere surrounded by a structured bath is trapped in a single (dual)-mode cavity. The global mechanical response function of the nanosphere is markedly altered by the non-Markovian structured bath through shifting the effective frequency and magnifying the response function. Consequently, when there is a small difference in the transmission rate within the regime of Markovian, the unidirectional amplification is achieved in the super-Ohmic spectral environment. In the double-optomechanical coupling system, the phase difference between two optomechanical couplings can reverse the transmission direction. Meanwhile, the non-Markovian bath still can amplify the signal because of the XX-type coupling between nanosphere and its bath.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3