Maskless photolithography based on ultraviolet micro-LEDs and direct writing method for improving pattern resolution

Author:

Tan Cuili,Ren Tianyang,Qu Daopeng,Shan Xinyi,Lin Runze,Zhang Zhihao,Li Fusheng,Han QiuyiORCID,Cui Xugao,Guo RuiqianORCID,Zhang ShanduanORCID,Tian PengfeiORCID

Abstract

Ultraviolet micro-LEDs show great potential as a light source for maskless photolithography. However, there are few reports on micro-LED based maskless photolithography systems, and the studies on the effects of system parameters on exposure patterns are still lacking. Hence, we developed a maskless photolithography system that employs micro-LEDs with peak wavelength 375 nm to produce micrometer-sized exposure patterns in photoresists. We also systematically explored the effects of exposure time and current density of micro-LED on static direct writing patterns, as well as the effects of stage velocity and current pulse width on dynamic direct writing patterns. Furthermore, reducing the size of micro-LED pixels enables obtaining high-resolution exposure patterns, but this approach will bring technical challenges and high costs. Therefore, this paper proposes an oblique direct writing method that, instead of reducing the micro-LED pixel size, improves the pattern resolution by changing the tilt angle of the sample. The experimental results show that the linewidths of the exposed lines decreased by 4.0% and 15.2%, respectively, as the sample tilt angle increased from 0° to 15° and 30°, which confirms the feasibility of the proposed method to improve the pattern resolution. This method is also expected to correct the exposure pattern error caused by optical distortion of the lens in the photolithography system. The system and method reported can be applied in various fields such as PCBs, photovoltaics, solar cells, and MEMS.

Funder

National Key Research and Development Program of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3