Highly robust spatiotemporal wavefront prediction with a mixed graph neural network in adaptive optics

Author:

Tang Ju1ORCID,Wu Ji1,Zhang Jiawei1,Zhang Mengmeng1,Ren Zhenbo12ORCID,Di Jianglei13ORCID,Hu Liusen4,Liu Guodong4,Zhao Jianlin1ORCID

Affiliation:

1. Northwestern Polytechnical University

2. Research & Development Institute of Northwestern Polytechnical University in Shenzhen

3. Guangdong University of Technology

4. China Academy of Engineering Physics

Abstract

The time-delay problem, which is introduced by the response time of hardware for correction, is a critical and non-ignorable problem of adaptive optics (AO) systems. It will result in significant wavefront correction errors while turbulence changes severely or system responses slowly. Predictive AO is proposed to alleviate the time-delay problem for more accurate and stable corrections in the real time-varying atmosphere. However, the existing prediction approaches either lack the ability to extract non-linear temporal features, or overlook the authenticity of spatial features during prediction, leading to poor robustness in generalization. Here, we propose a mixed graph neural network (MGNN) for spatiotemporal wavefront prediction. The MGNN introduces the Zernike polynomial and takes its inherent covariance matrix as physical constraints. It takes advantage of conventional convolutional layers and graph convolutional layers for temporal feature catch and spatial feature analysis, respectively. In particular, the graph constraints from the covariance matrix and the weight learning of the transformation matrix promote the establishment of a realistic internal spatial pattern from limited data. Furthermore, its prediction accuracy and robustness to varying unknown turbulences, including the generalization from simulation to experiment, are all discussed and verified. In experimental verification, the MGNN trained with simulated data can achieve an approximate effect of that trained with real turbulence. By comparing it with two conventional methods, the demonstrated performance of the proposed method is superior to the conventional AO in terms of root mean square error (RMS). With the prediction of the MGNN, the mean and standard deviation of RMS in the conventional AO are reduced by 54.2% and 58.6% at most, respectively. The stable prediction performance makes it suitable for wavefront predictive correction in astronomical observation, laser communication, and microscopic imaging.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Guangdong Introducing Innovative and Entrepreneurial Teams of “The Pearl River Talent Recruitment Program”

Basic and Applied Basic Research Foundation of Guangdong Province

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction Method of Higher Education College Students’ Employability Based on Data Mining;Learning and Analytics in Intelligent Systems;2024

2. Construction of Communication Error Correction System Based on Support Vector Machine Algorithm;2023 International Conference on Internet of Things, Robotics and Distributed Computing (ICIRDC);2023-12-29

3. Simulation of Sound Signal Analysis Model in Complex Environments Based on Deep Learning Algorithms;2023 International Conference on Internet of Things, Robotics and Distributed Computing (ICIRDC);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3