Aberration analysis and compensate method of a BP neural network and sparrow search algorithm in deep ultraviolet lithography

Author:

Zhang Shuang12,Zhang Libin12ORCID,Gai Tianyang12,Xu Peng12ORCID,Wei Yayi12

Affiliation:

1. Chinese Academy of Sciences

2. University of Chinese Academy of Sciences (UCAS)

Abstract

Mass production can be planned by utilizing the multiple patterning technology of 193 nm immersion scanners at the 7 nm technology node. In deep ultraviolet lithography, imaging performance is significantly affected by distortions of projection optics. For 7 nm immersion lithography layer patterns, distortions of the projection optics must be tightly controlled. This paper proposes an optimization method to determine the distribution of Zernike aberration coefficients. First, we build aberration prediction models using the backpropagation (BP) neural network. Then, we propose an aberration optimization method based on the sparrow search algorithm (SSA), using the common indicators of the lithography process window, depth of focus, mask error enhancement factor, and image log slope as the objective function. Some sets of optimized aberration distributions are obtained using the SSA optimization method. Finally, we compare the results of the SSA optimization algorithm with those obtained by rigorous computational simulations. The aberration combination distribution optimized by the SSA method is much more significant than the value under the zero aberration (ideal conditions), a nonoptimal distribution in deep ultraviolet lithography image simulation. Furthermore, the results indicate that the aberration optimization method has a high prediction accuracy.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Science and Technology Major Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3