TAJ-Net: a two-stage clustered cell segmentation network with adaptive joint learning of spatial and spectral information

Author:

Zhang Qing,Zhou Xiaohui1,Wu Chunyan2,Gao Xiwen3,Wang Yan,Li QingliORCID

Affiliation:

1. Shanghai Jiao Tong University Affiliated Sixth People’s Hospital

2. Tongji University

3. Fudan University

Abstract

Pulmonary adenocarcinoma is the primary cause of cancer-related death worldwide and pathological diagnosis is the “golden standard” based on the regional distribution of cells. Thus, regional cell segmentation is a key step while it is challenging due to the following reasons: 1) It is hard for pure semantic and instance segmentation methods to obtain a high-quality regional cell segmentation result; 2) Since the spatial appearances of pulmonary cells are very similar which even confuse pathologists, annotation errors are usually inevitable. Considering these challenges, we propose a two-stage 3D adaptive joint training framework (TAJ-Net) to segment-then-classify cells with extra spectral information as the supplementary information of spatial information. Firstly, we propose to leverage a few-shot method with limited data for cell mask acquisition to avoid the disturbance of cluttered backgrounds. Secondly, we introduce an adaptive joint training strategy to remove noisy samples through two 3D networks and one 1D network for cell type classification rather than segmentation. Subsequently, we propose a patch mapping method to map classification results to the original images to obtain regional segmentation results. In order to verify the effectiveness of TAJ-Net, we build two 3D hyperspectral datasets, i.e., pulmonary adenocarcinoma (3,660 images) and thyroid carcinoma (4623 images) with 40 bands. The first dataset will be released for further research. Experiments show that TAJ-Net achieves much better performance in clustered cell segmentation, and it can regionally segment different kinds of cells with high overlap and blurred edges, which is a difficult task for the state-of-the-art methods. Compared to 2D models, the hyperspectral image-based 3D model reports a significant improvement of up to 11.5% in terms of the Dice similarity coefficient in the pulmonary adenocarcinoma dataset.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3