New interpretation of quantum wire luminescence using a non standard description of the valence band states

Author:

Filipowitz F.,Marti U.,Glick M.,Reinhart F.K.,Wang J.,von Allmen P.,Leburton J.P.

Abstract

Theoretical predictions1 have shown that confined structures, quantum wires (QWR) or quantum dots (QD), should have higher gain and absorption, compared to quantum wells, owing to the discontinuity in the joint density of states. We use a non standard description of the valence band states2 to evaluate the absorption of V-shaped quantum wires close to the band edge. We choose the projection axis of the angular momentum of the valence band states along the non-confined direction of the wire. This description has two advantages: (i) the masses are isotropic along the two confined directions and (ii) the light hole (lh) and heavy hole (hh) states are decoupled at kz=0, if the kinetic energy of the confined holes is the same along both confined directions and the energy separation between the {lh,hh}i and {lh,hh}i+1 subbands is high. This description is particularly advantageous close to the band edge where transitions are mostly excitonic. Photoluminescence (PL) and photoluminescence excitation (PLE) measurements made on V-shaped quantum wires are reinterpreted: the lowest energy transition is a e1-lh1 excitonic transition and the second lowest is a e1-hh1 excitonic transition. This new interpretation is the first to explain the lower intensity of the lowest energy peak observed in PL and PLE measurements. To assess the impact of the non-uniformity of the wires, we evaluate the absorption of V-shaped QWR (V-QWR) grown by MBE deposition over a non-planar substrate3.

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3