Tailoring transmission window in a dynamic way with a multi-degree-of-freedom

Author:

Li Chenchen1,Yan Mingbao1,Wang He1ORCID,Wang Jiafu1,Qin Zhe1ORCID,Zheng Lin12,Li Yongfeng1,Qu Shaobo1

Affiliation:

1. Shannxi Key Laboratory of Artificially-Structured Functional Materials and Devices

2. Xi'an jiaotong university School

Abstract

With the rapid development of wireless technology, the revolution of tailoring transmission window in dynamic way for the next generation communication systems is urgently required. However, the degree-of-freedom for switching transmission spectra of an effective medium still needs further investigation. Here, we propose a paradigm of solving this difficult academic issue via the method of bias-voltage-driven. Leveraging PIN diodes and varactor diodes into the predesigned positions of plasmonic meta-structures, the macro-control of transmission windows switch and the detailed dispersion manipulation can be separately achieved by synergy modulation of feed networks. Both the numerical simulations and experimental verifications are conducted to support the effectiveness of the proposed method. Significantly, the proposed paradigm presents great potential for applications in intelligent radome, adaptive communication systems, and other EM scenarios with multi-degree-of-freedom.

Funder

National Key Research and Development Program China

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3