Affiliation:
1. Frontier Science Center for Quantum Information and Collaborative Innovation Center of Quantum Matter
Abstract
A quantum gas microscope plays an important role in cold-atom experiments, which provides a high-resolution imaging of the spatial distributions of cold atoms. Here we design, build and calibrate an integrated microscope for quantum gases with all the optical components fixed outside the vacuum chamber. It provides large numerical aperture (NA) of 0.75, as well as good optical access from side for atom loading in cold-atom experiments due to long working distance (7 mm fused silica+6 mm vacuum) of the microscope objective. We make a special design of the vacuum viewport with a T-shape window, to suppress the window flatness distortion introduced by the metal-glass binding process, and protect the high-resolution imaging from distortions due to unflattened window. The achieved Strehl ratio is 0.9204 using scanning-near-field microscopy (SNOM) fiber coupling incoherent light as point light source.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics