Blazed grating enables highly decoupled optically variable devices fabricated by vibration-assisted diamond texturing

Author:

Wang Jianjian123ORCID,Wang Yaoke2,Zhang Jianfu1,Schulze Volker3,Guo Ping2

Affiliation:

1. Tsinghua University

2. Northwestern University

3. Karlsruhe Institute of Technology

Abstract

Optically variable devices (OVDs) are well received for anti-counterfeiting and decorative applications. In this study, new strategies to develop highly decoupled OVDs were proposed and demonstrated based on the fast patterning of blazed gratings by vibration-assisted diamond texturing. A unique surface generation mechanism was revealed as a combined cutting and forming process. One facet of blazed grating is generated by the cutting motion defined by the tool tip trajectory. The other facet is formed by the tool flank face, which establishes the blaze angle. This process is able to generate high-resolution, structurally colored graphics by modulating cutting velocity to control the grating distribution. Due to the unique surface generation mechanism, the orientation of the created blazed gratings is intrinsically perpendicular to the cutting direction. Thus, it enables the flexible control of concentration directions of diffracted light by tuning the orientation of blazed gratings. We designed and demonstrated two types of highly decoupled OVDs based on vibration-induced blazed gratings. The orthogonal-type OVD utilizes the azimuth angle dependence of blazed gratings to encode two images in orthogonal cutting directions. The in-plane-type OVD utilizes the optimized diffraction efficiency of blazed gratings in a given diffraction order to encode two images in opposite cutting directions. The fabricated OVDs are presented and compared with optical simulation results based on an extended scalar diffraction theory.

Funder

McCormick School of Engineering, Northwestern University

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3