Stable sensing platform for diagnosing electrolyte disturbance using laser-induced breakdown spectroscopy

Author:

Wang Weiliang1,Liu Yuanchao2,Chu Yanwu3,Xiao Siyi1,Nie Junfei1,Zhang Junlong1,Qi Jianwei4,Guo Lianbo1ORCID

Affiliation:

1. Huazhong University of Science and Technology

2. City University of Hong Kong

3. Chinese Academy of Sciences

4. Institute of Hematology & Blood Diseases Hospital

Abstract

Electrolyte disturbance is very common and harmful, increasing the mortality of critical patients. Hence, rapid and accurate detection of electrolyte levels is vital in clinical practice. Laser-induced breakdown spectroscopy (LIBS) has the advantage of rapid and simultaneous detection of multiple elements, which meets the needs of clinical electrolyte detection. However, the cracking caused by serum drying and the effect of the coffee-ring led to the unstable spectral signal of LIBS and inaccurate detection results. Herein, we propose the ordered microarray silicon substrates (OMSS) obtained by laser microprocessing, to solve the disturbance caused by cracking and the coffee-ring effect in LIBS detection. Moreover, the area of OMSS is optimized to obtain the optimal LIBS detection effect; only a 10 uL serum sample is required. Compared with the silicon wafer substrates, the relative standard deviation (RSD) of the serum LIBS spectral reduces from above 80.00% to below 15.00% by the optimized OMSS, improving the spectral stability. Furthermore, the OMSS is combined with LIBS to form a sensing platform for electrolyte disturbance detection. A set of electrolyte disturbance simulation samples (80% of the ingredients are human serum) was prepared for this platform evaluation. Finally, the platform can achieve an accurate quantitative detection of Na and K elements (Na: RSD < 6.00%, R2 = 0.991; K: RSD < 4.00%, R2 = 0.981), and the detection time is within 5 min. The LIBS sensing platform has a good prospect in clinical electrolyte detection and other blood-related clinical diagnoses.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3