Computationally efficient adaptive decompression for whole slide image processing

Author:

Li Zheyu1,Li Bin2,Eliceiri Kevin W.2ORCID,Narayanan Vijaykrishnan1

Affiliation:

1. Pennsylvania State University

2. Morgridge Institute for Research

Abstract

Whole slide image (WSI) analysis is increasingly being adopted as an important tool in modern pathology. Recent deep learning-based methods have achieved state-of-the-art performance on WSI analysis tasks such as WSI classification, segmentation, and retrieval. However, WSI analysis requires a significant amount of computation resources and computation time due to the large dimensions of WSIs. Most of the existing analysis approaches require the complete decompression of the whole image exhaustively, which limits the practical usage of these methods, especially for deep learning-based workflows. In this paper, we present compression domain processing-based computation efficient analysis workflows for WSIs classification that can be applied to state-of-the-art WSI classification models. The approaches leverage the pyramidal magnification structure of WSI files and compression domain features that are available from the raw code stream. The methods assign different decompression depths to the patches of WSIs based on the features directly retained from compressed patches or partially decompressed patches. Patches from the low-magnification level are screened by attention-based clustering, resulting in different decompression depths assigned to the high-magnification level patches at different locations. A finer-grained selection based on compression domain features from the file code stream is applied to select further a subset of the high-magnification patches that undergo a full decompression. The resulting patches are fed to the downstream attention network for final classification. Computation efficiency is achieved by reducing unnecessary access to the high zoom level and expensive full decompression. With the number of decompressed patches reduced, the time and memory costs of downstream training and inference procedures are also significantly reduced. Our approach achieves a 7.2× overall speedup, and the memory cost is reduced by 1.1 orders of magnitudes, while the resulting model accuracy is comparable to the original workflow.

Funder

National Institutes of Health

Morgridge Institute for Research

Semiconductor Research Corporation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3