Generalized inverse matrix - long short-term memory neural network data processing algorithm for multi-wavelength pyrometry

Author:

Xing Jian,Yan Pengyu,Li WenchaoORCID,Cui ShuanglongORCID

Abstract

The data processing of multi-wavelength pyrometry (MWP) is faced with the problem of solving N equations and N+1 unknown underdetermined equations. The traditional iterative optimization methods are difficult to meet the actual measurement requirements in terms of accuracy and efficiency. With the development of artificial intelligence technology in the field of data processing, it is expected to solve this problem. A generalized inverse matrix (GIM) is combined with a long short-term memory (LSTM) neural network algorithm for data processing of MWP is proposed, which emissivity influence is dispensed completely. Firstly, GIM is used for classification of the emissivity. Furthermore, inputting to the LSTM network not only ensures the accuracy of temperature measurement but also greatly improves the efficiency. The simulation results demonstrated that the accuracy of the GIM-LSTM algorithm was superior to that of the GIM-EPF and BP methods. After random noise was added, the relative error was still less than that for the GIM-EPF and BP methods, and the algorithm exhibited excellent anti-noise performance. Publicly available temperature data for the exhaust plume of a rocket engine were processed by the GIM-LSTM method, and the average relative error was less than the traditional method. Especially, in terms of inversion speed, the operational time of the GIM-LSTM algorithm was at the millisecond level, which is of great significance for the real-time monitoring of rocket exhaust plumes. The proposed GIM-LSTM data processing algorithm affords high accuracy and speed and is suitable for practical measurement of high-emissivity objects in real-time via MWP.

Funder

Heilongjiang Provincial Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3