Directional surface plasmon polariton scattering by single low-index dielectric nanoparticles: simulation and experiment

Author:

Sun Xuqing12,Liu Hongyao1,Jiang Liwen12,Wei Ruxue12ORCID,Wang Chang12,Wang Xue12,Sun Xiaojuan12,Wang Fei12,Lu Xinchao1ORCID,Evlyukhin Andrey B.3ORCID,Huang Chengjun12

Affiliation:

1. Institute of Microelectronics of Chinese Academy of Sciences

2. University of Chinese Academy of Sciences

3. Leibniz University

Abstract

Directionally scattered surface plasmon polaritons (SPPs) promote the efficiency of plasmonic devices by limiting the energy within a given spatial domain, which is one of the key issues to plasmonic devices. Benefitting from the magnetic response induced in high-index dielectric nanoparticles, unidirectionally scattered SPPs have been achieved via interference between electric and magnetic resonances excited in the particles. Yet, as the magnetic response in low-index dielectric nanoparticles is too weak, the directionally scattered SPPs are hard to detect. In this work, we demonstrate forward scattered SPPs in single low-index polystyrene (PS) nanospheres. We numerically illustrate the excitation mechanism of plasmonic induced electric and magnetic multipole modes, as well as their contributions to forward SPP scattering of single PS nanospheres. We also simulate the SPP scattering field distribution obtaining a forward-to-backward scattering intensity ratio of 50.26:1 with 1 μm PS particle. Then the forward scattered SPPs are experimentally visualized by Fourier transforming the real-space plasmonic imaging to k-space imaging. The forward scattered SPPs from low-index dielectric nanoparticles pave the way for SPP direction manipulation by all types of nanomaterials.

Funder

National Natural Science Foundation of China

Scientific Research Equipment Project of Chinese Academy of Sciences

Deutsche Forschungsgemeinschaft

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3