Affiliation:
1. Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering
Abstract
We present an adaptive optics (AO) system for a 1.94-µm laser source. Our system consists of a home-made Shack–Hartmann wavefront sensor and silver-coated bimorph deformable mirror operating in a closed-loop control scheme. The wavefront sensor used an uncooled vapor phase deposition PbSe focal-plane array for the actual light sensing. An effect of thermal afterimage was found to be reducing the centroid detection precision significantly. The effect was analyzed in detail and finally has been dealt with by updating the background calibration. System stability was increased by reduction of control modes. The system functionality and stability were demonstrated by improved focal spot quality. By replacing some of the used optics, the range of the demonstrated mid-IR AOS could be extended to cover the spectral range of 1–5 µm. To the best of our knowledge, it is the first AO system built specifically for mid-IR laser wavefront correction.
Funder
European Regional Development Fund
European Union’s Horizon 2020 Research and Innovation Programme
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献