Entanglement-enabled decoherence-free transmission of two-color photons through a single mode fiber

Author:

Okawa Youhei12ORCID,Fujisawa Shunsuke1,Yasutake Yuhsuke1,Fukatsu Susumu1

Affiliation:

1. University of Tokyo

2. Japan Aerospace Exploration Agency

Abstract

We demonstrate decoherence-tolerant transmission of a Bell state through a single-mode fiber (SMF) using the photon frequency degree of freedom. To this end, a slightly non-degenerate polarization-entangled singlet, |Ψ⟩=(|HV⟩−|VH⟩)/2, is localized at the SMF as the depolarization channel subject to random noise due to incessant fiber bending. Two-photon beats and quantum state tomography jointly verify the absence of collective decoherence, showing that |Ψ⟩ is the sought-after one-dimensional decoherence-free subspace (DFS) pertaining to SMF. Efficient splitting and combining of photon streams in our DFS help outperform the DFS in time domain. This motivates us to attempt DFS-enabled fault-tolerant fiber transmission of biphoton qubits. Two-photon BB84 protocol is implemented in a polarization-maintaining fiber to which dephasing noise is relevant so that a two-dimensional DFS is appropriate. A low bit error rate 5.4% is achieved by encoding one-qubit information onto the biphoton state in spite of significant polarization fluctuation. Our scalable frequency-based DFS has a natural affinity for wavelength division multiplexing in fiber communication by design and as such is extensible to multi-particle entanglement.

Funder

Japan Society for the Promotion of Science

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3